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The response of the Hodgkin-Huxley neuronal model subjected to stochastic uncorrelated spike trains
originating from a large number of inhibitory and excitatory post-synaptic potentials is analyzed in detail. The
model is examined in its three fundamental dynamical regimes: silence, bistability, and repetitive firing. Its
response is characterized in terms of statistical indicators �interspike-interval distributions and their first mo-
ments� as well as of dynamical indicators �autocorrelation functions and conditional entropies�. In the silent
regime, the coexistence of two different coherence resonances is revealed: one occurs at quite low noise and is
related to the stimulation of subthreshold oscillations around the rest state; the second one �at intermediate
noise variance� is associated with the regularization of the sequence of spikes emitted by the neuron. Bistability
in the low noise limit can be interpreted in terms of jumping processes across barriers activated by stochastic
fluctuations. In the repetitive firing regime a maximization of incoherence is observed at finite noise variance.
Finally, the mechanisms responsible for the different features appearing in the interspike-interval distributions
�like multimodality and exponential tails� are clearly identified in the various regimes.
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I. INTRODUCTION

Neuronal models represent a fundamental benchmark to
investigate the dynamical response of excitable systems un-
der the influence of noise. One of the main reasons justifying
the interest of neuroscientists for this subject resides in the
observation that in vivo neocortical neurons are subjected to
a constant bombardment of inhibitory and excitatory post-
synaptic potentials �EPSPs and IPSPs�, somehow resembling
a background noise. As a consequence in the last decades a
large number of numerical and theoretical studies have been
devoted to the characterization of the response of simple and
more elaborate neuronal models under the influence of a
large variety of stochastic inputs �1–3�.

Among the many proposed biophysical models the one
introduced by Hodgkin and Huxley in 1952 �4� can still be
considered as a valid framework for exploring neural excit-
ability, due to its relative simplicity combined with the fact
that it embodies the major features of membrane potential
evolution �5�. In particular, in order to understand the origin
of the variability observed in the distribution of spikes emit-
ted by cortical neurons �6� the response of the Hodgkin-
Huxley �HH� model has recently been studied under the in-
fluence of additive noise �7,8� or subjected to trains of post-
synaptic potentials �7,9,10�.

Stochastic resonance �SR� �11� and coherence resonance
�CR� �12,13� represent some of the most interesting phenom-
ena observed experimentally and numerically for excitable
neuronal systems driven by noise. While SR is related to the
enhanced ability of neurons to detect weak �periodic or ape-

riodic� signals when subjected to additive noise, CR refers to
the regularization of the response of the system at an optimal
noise intensity in the absence of an external signal �for a
comprehensive review see Ref. �14��. For neuronal systems
evidence of CR have been reported experimentally for the
cat’s spinal and cortical neural ensembles �15� and theoreti-
cally for the following models: FitzHugh-Nagumo �13�,
leaky integrate-and-fire �16,17�, Hindmarsh-Rose �18�, and
Morris-Lecar �19�. CR has also been observed for the HH
model �20,21�, but these results mainly refer to additive con-
tinuous noise and to the silent regime near the saddle-node
bifurcation of limit cycles.

Our aim is to perform a detailed analysis of the response
of the HH model subjected to many stochastic trains of
EPSPs and IPSPs in its three fundamental dynamical re-
gimes: the silent, the bistable, and the repetitive firing ones.
The neuron is studied in the so-called high-input regime �6�,
i.e., when it receives hundreds or thousands of post-synaptic
inputs per emitted spike. In this situation the stochastic input
can simply be characterized in terms of its average, repre-
senting the bifurcation parameter of the model, and its vari-
ance. Most of the attention is devoted to the mechanisms
responsible for neuronal firing in the different dynamical re-
gimes and to the characterization of CR in terms of dynami-
cal and statistical indicators. In particular, we show that the
conditional entropies can be employed as powerful indicators
to detect coherence, similar to what has previously been
done to characterize stochastic resonance for a Schmitt trig-
ger �22�. Sound evidence of two coexisting CRs are reported,
the first one related to subthreshold oscillations occurring at
very low noise fluctuations in the absence of spiking and the
second one due to the regularization of the emitted spike
trains. In the regime of bistability the intermittent dynamics
between the two stable dynamical states is interpreted in
terms of jumping processes across activation barriers in-
duced by noise fluctuations. Finally, evidence of incoherence
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maximization in the repetitive firing regime is presented.
The model and the various employed indicators, namely

the distribution of the interspike-interval �ISI�, the spike-
triggered averages, the autocorrelation function of the signal,
and of the ISIs, and the conditional entropies are introduced
in Sec. II. The results for the silent regime are reported in
Sec. III, while the bistable and repetitive firing regimes are
examined in Secs. IV and V, respectively. Sec. VI contains a
summary of the results and concluding remarks.

II. MODELS AND TOOLS

A. The Hodgkin-Huxley model

The Hodgkin-Huxley �HH� model describes the dynami-
cal evolution of the membrane potential V�t� and it can be
written as

− C
dV

dt
= gNam3h�V − ENa� + gKn4�V − EK�

+ gL�V − EL� − I�t� , �1�

where I�t� is an external current and the evolution of the
gating variables X=m ,n ,h is ruled by three ordinary differ-
ential equations �ODE’s� of the form

dX

dt
= �X�V��1 − X� − �X�V�X . �2�

The parameters entered in Eq. �1� are C=1 �F/cm2, ENa
=50 mV, EK=−77 mV, EL=−54.4 mV, gNa=120 mS/cm2,
gK=36 mS/cm2, and gL=0.3 mS/cm2. The expressions of
the nonlinear functions �X�V� and �X�V� are explicitly re-
ported in Table I. An estimation of an effective “passive”
membrane time constant for the HH model is reported in
Ref. �2� and this amounts to �1 ms.

We consider the single HH model subjected to NE �respec-
tively NI� uncorrelated trains of excitatory �respectively in-
hibitory� post-synaptic potentials �EPSPs, respectively IP-
SPs�. Each post-synaptic potential �PSP� is schematized as
an instantaneous variation of the membrane potential by a
positive �respectively negative� amount �V for excitatory
�respectively inhibitory� synapses. Similarly to what has
been done in Ref. �9�, the amplitude of each voltage kick is
assumed to be 0.5 mV, i.e., reasonably small ��7% � with
respect to the distance between the “threshold” for spike ini-
tiation for rapid EPSPs and the resting potential
��6−7 mV� �1,23�. Moreover, amplitudes �0.5 mV are
comparable with average EPSPs experimentally measured
for pyramidal neurons in the visual cortex of rats �2�. This
amounts to exciting the neuron ��1�,�2�� with an impulsive
current

I�t� = Q��
k=1

Ne

�
l

��t − tk
l � − �

m=1

Ni

�
n

��t − tm
n �� �3�

where tk
l �respectively tm

n � are the arrival times of the excita-
tory �respectively inhibitory� PSPs and Q=C�V is the charge
associated to each kick. The dynamics has been integrated by
employing a fourth order Runge-Kutta scheme with a time
step of �t=10−5−10−2 ms. A spike is identified when V�t�
overcomes a fixed detection threshold �=−5 mV. The re-
sults reported in this paper refer to averages performed over
time spans corresponding to 30 000 to 600 000 emitted
spikes or �in the low noise limit, where spikes are more rare�
at least to an integration time of t�1000−10 000 s.

In order to reproduce realistic inputs received by cortical
neurons, for each afferent synapse the time interval distribu-
tion between PSP inputs is chosen Poissonian with an aver-
age frequency 	0=100 Hz �6�. Since the trains coming from
different neurons are assumed to be uncorrelated, this
amounts to considering only two Poissonian distributed input
trains of kicks of amplitude �V, one for the excitatory and
one for the inhibitory neurons with frequencies 	E=Ne
	0
and 	I=NI
	0, respectively. We consider a number of input
neurons of the order of 	100–1000, thus the HH neuron is
stimulated with average frequencies 	E�	I�	104–105 Hz,
consistent with a high-input regime �6�.

The stochastic input can be characterized in terms of the
net spike count within a temporal window �T

N��T� = �
k=1

Ne

nk
E��T� − �

m=1

Ni

nm
I ��T� �4�

where nk
E��T� �respectively nm

I ��T�� represents the number
of afferent EPSPs �respectively IPSPs� received from neuron
k �respectively m� in the interval �T. According to the theory
of renewal processes �1� each variable n��T� has a Gaussian
distribution with average 
n��T��=�T /aISI and variance

n2��T��− 
n��T��2= ��TvISI� /aISI

3 , where aISI and vISI indi-
cate average and variance of the ISI distribution. In particular
for Poissonian distributed ISIs with an average frequency of
	0: aISI=1/	0 and vISI=1/	0

2.
By assuming statistically independent input trains, also

N���T�� follows a Gaussian distribution with an average and
variance given by


N��T�� = �Ne − Ni�
�T

aISI
,

TABLE I. �X�V� and �X�V� functions �X=m ,n ,h� entering in Eq. �2� for the voltage expressed in mV.

X �X�V��s−1� �X�V��s−1�

m 0.1�V+40� / �1− exp�−�V+40� /10�� 4 exp�−�V+65� /18�
n 0.01�V+55� / �1− exp�−�V+55� /10�� 0.125 exp�−�V+65� /80�
h 0.07 exp�−�V+65� /20� 1/ �exp�−�V+35� /10�+1�
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Var�N��T�� = �Ne + Ni�
��TvISI�

aISI
3 = �2 �T

aISI
. �5�

Here it has also been assumed that the excitatory and inhibi-
tory inputs are characterized by the same aISI and vISI. The
parameter �= ���Ne+Ni�vISI� /aISI measures the standard de-
viation of the stochastic input process.

In the high-input regime the distribution of N���T�� turns
out to be the same for input ISIs following a Poissonian or a
uniform distribution

PU�t� =  	0

2�
if

�1 − ��
	0

 t 
�1 + ��

	0
,

0 otherwise,
� �6�

provided that both distributions have the same average and
variance. For PU�t�, with 0�1, aISI=1/	0, vISI

=�2 / �	0
23�, and �=���Ne+Ni� /3. Since we are interested in

analyzing the effect of the variance of the stochastic process
on the response of the HH model for fixed 
N��T��, we will
consider uniformly distributed ISIs, because this kind of dis-
tribution allows one to reach extremely small values of the
variance �by lowering the �-parameter� without modifying
the average.

Both for Poissonian and uniform distributions with fixed
aISI=1/	0 the average current stimulating the neuron is given
by

Ī =
C�V
N��T��

�T
= C�V	0�Ne − Ni� . �7�

The bifurcation parameter Ī determines in which dynamical
regime the neuron is operating.

Since it is equivalent to stimulate a neuron with a constant
current I�t�� Idc or with a periodic train of kicks of suffi-
ciently high frequency 	̄, the frequency-current response
curve �usually obtained with a constant input current� can
also be recovered by considering a periodic input originating
from Ni inhibitory and Ne excitatory synapses each firing
with a frequency 	0 �cf. Fig. 1�.

Three principal dynamical regimes can be singled out for
the HH model subject to a constant current stimulation �24�.
For small currents the HH model is in a silent regime, i.e., its
dynamics is always attracted by a stable fixed point. In par-
ticular, the relaxation towards this state is characterized by
damped oscillations, since it is a focus. By increasing the
current the fixed point looses its stability via a sub-critical

Hopf bifurcation for Ī= IHB�9.78 �A/cm2. The unstable
limit cycles emerging at IHB annihilates via a saddle-node
bifurcation with stable periodic oscillations, corresponding to

tonic firing, at a lower value of the current Ī= ISN
�6.27 �A/cm2. Therefore the following three dynamical re-
gimes can be identified:

1. A silent regime for Ī� ISN;
2. A bistable regime, where the fixed point coexists

with a stable limit cycle solution for ISN� Ī� IHB;

3. A periodic firing regime for Ī� IHB.

B. Statistical and dynamical indicators

In order to characterize the output of the neuron and to
examine the coherence effects in the response we have em-
ployed the following indicators:

�i� The distribution of the output interspike intervals
PISI�t� and its first moments: the average ISI �AISI� and the
corresponding standard deviation �SISI�;

�ii� The spike-triggered average potential �STAP� �25�
that gives the average shape of the membrane potential pre-
ceding the emission of a spike and the spike-triggered aver-
age input fluctuations �STAF�:

q�t� =
�Nt��T� − 
N��T���

�Var�N��T��
, �8�

where Nt��T� is the net spike count at time t�0 before a
spike emission occurring at t=0, while the expressions of

N��T�� and Var�N��T�� are reported in Eqs. �5�. The
STAF �8� can be related to current fluctuations, estimated
over a time window �T, with respect to their average

value Ī �see Eq. �7��. A positive �respectively negative�
value of q at a certain time t�0 indicates a correlation
between a positive �respectively negative� current fluctua-
tion at that time and the emission of a spike at t=0.

�iii� The coefficient of variation of the ISIs

R =
SISI

AISI
, �9�

typically employed to characterize the nature of a process,
being R=0 for a perfectly periodic response and R=1 for
Poissonian output;

�iv� The normalized autocorrelation function C�t� for
the membrane potential and the correlation time �13� defined
as

�c = �
0

�

C2�t�dt . �10�

FIG. 1. The filled circles represent the frequency-current re-

sponse curve �	C versus Ī� obtained by considering a periodic train

of kicks of amplitude �V=0.5 mV and frequency 	̄= Ī / �C�V�
=	0�Ne−Ni�. The solid �respectively dash-dotted� line indicates the
stable �respectively unstable� fixed point solution. In the inset the
time evolution of the membrane potential V�t�, corresponding to a
typical limit cycle solution, is shown.
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As a further indicator we have employed the conditional
entropies h�N� �26�. In order to define these quantities, we
need to digitize the output of the neuron in a binary se-
quence, where 1 and 0 indicates, respectively presence or
absence of a spike in a certain time window �t. The choice
of the resolution �t employed to analyze the output is crucial
�27�1.

Indicating with sk the binary symbol associated to the kth
window of the time series and with WN= �si+1 ,si+2 , . . . ,si+N� a
sequence of symbols �word� of length N, the probability that
a certain word will be observed is P�WN�. The Shannon
block entropy is then defined as

H�N� = − �
�WN�

P�WN�log2P�WN� �11�

where the sum is extended to all the 2N possible words of
length N. The conditional entropies are given by the follow-
ing difference �27�:

h�N� = H�N + 1� − H�N�

= − � �
�sN+1�

P�sN+1�WN�log2P�sN+1�WN��
�WN�

, �12�

where the brackets indicate the average over all possible se-
quences of length N preceding the symbol sN+1 and
P�sN+1 �WN� is the conditional probability to observe the
symbol sN+1 once the word WN has been registered. By defi-
nition we set h�0�=H�1�.

The conditional entropies represent the average informa-
tion gained by the knowledge of the �N+1�-th symbol of a
time series, once the other N symbols are already known. For
sufficiently long words, if the examined process can be con-
sidered as “ergodic,” h�N� tends to an asymptotic value hA,
the length M for which the saturation is attained gives the
order �the memory� of the Markovian process able to repro-
duce the considered dynamics �28�. For a regular process
�e.g., a periodic state� hA=0, while for a purely stochastic
process the conditional entropies attain their maximal value,
i.e., hA=1 �bit�2.

As already mentioned, the conditional entropies have
been successfully employed to characterize SR �22�. In par-

ticular a clear minimum for hA was observed in correspon-
dence to an optimal noise amplitude giving rise to a maxi-
mum in the signal-to-noise ratio �SNR�, that is a typical
signature of SR. The minimum in hA was associated with the
most ordered �coherent� structure of the output binary se-
quence.

Finally, in order to characterize the correlations present in
the binary sequence we use the following autocorrelation
function �2�:

Cbin�k� =
�i

�
sisi+k� − 
si��

�i
�
si

2� − 
si�2�
�13�

and the associated correlation time �bin defined as in Eq.
�10�.

In the next sections we investigate the response of the HH
model stimulated by stochastic spike trains in the three dy-
namical regimes shown in Fig. 1.

III. SILENT REGIME

In the regime where the neuron subjected to a constant

current does not fire, i.e., in the range Ī� ISN
�6.27 �A/cm2, the presence of noise in the input �charac-
terized by the standard deviation of the noise �� induces
stochastic firing of the model with an average firing rate
	out�1/AISI steadily increasing with � �as shown in Fig. 2

for Ī=5 �A/cm2�.
For a fixed average input current Ī the ISI-distribution

depends strongly on the standard deviation � of the noise
�cf. Fig. 3�. For low noise PISI�t� exhibits a multimodal struc-
ture with an exponential tail, for increasing noise the addi-
tional peaks and the tail disappear gradually. In the high
noise limit PISI�t� tends to an inverse Gaussian �1,30�.

In the following Sec. III A we discuss the mechanisms
responsible for the firing activity of the neuron in the low
and high noise limits, while Sec. III B is devoted to coher-
ence resonance phenomena observed for the intermediate
level of noise fluctuations.

1The time window �t should be chosen in an appropriate way to
avoid on one side observation of two spikes within the same win-
dow and on the other side to have extremely long series of zeros,
that would spoil the statistical analysis. A good choice of �t is the
refractory period of the neuron following the emission of a spike
and an upper bound for this time can be given by the measured
minimal ISI value. Since the period of relative refractoriness de-
creases upon increasing the amount of noise, for each current we
have chosen �t to be the minimal ISI measured for the maximum
noise variance considered. As a matter of fact �t=5 ms has been

used for all current values, apart from Ī=0, where �t=7 ms was
more appropriate.

2From a numerical point of view it is known that the estimation of
Shannon entropy �11� from finite samples can lead to underestima-
tion of H�N�. In order to reduce the systematic errors arising from
naive estimations of P�WN� we have employed the analytic estima-
tor recently introduced by Grassberger �29�.

FIG. 2. Average firing rate 	out as a function of � for Ī
=5 �A/cm2. In the inset the frequency is plotted in a lin-log scale
as a function of 1/�2 for �2�500. The dashed line is an exponen-
tial fit y=A
exp�−�c

2 /�2� in the range 6��2�20 with A=162
and �c

2�93.
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A. Response of the neuron to low and high noise

Let us discuss the origin of the main features present in
PISI�t� at low noise. The coexistence of multipeaks and the
exponential tail in Fig. 3�a� suggests that at least two differ-
ent mechanisms are responsible for the firing of the neuron.

1. Spikes triggered by relaxation oscillations

We can safely affirm that the multiple peaks in the PISI�t�
are associated with the relaxation oscillations of the mem-
brane potential towards the rest state following the emission
of a spike. However, a linear stability analysis around the
stable fixed point can provide the oscillation periods around
the focus, but is not sufficient to fully characterize the relax-
ation dynamics, that also exhibits nonlinear aspects.

In order to understand if these oscillations are responsible
for the multimodal structure of PISI�t�, we have stimulated

the model ��1�, �2�� with a step current of amplitude Ī, i.e.,

I�t� = �0 if t  0,

Ī if t � 0,� �14�

and registered the shape of the output V�t�. As shown in Fig.
4�a� �dashed line�, the HH model responds emitting one or
more action potentials followed by damped oscillations. The
first oscillation of period Tnl has a clear nonlinear character,
while we have verified that the angular frequency 2� /Tl de-
scribing the subsequent oscillations corresponds to the
imaginary part of the complex conjugate Floquet eigenvalues
associated to the stable fixed point. Therefore the latter solu-
tions can be completely characterized within a linear stability
analysis of model ��1�,�2��.

To better compare the periods of the relaxation oscilla-
tions with the measured positions of the first �respectively
second� peak tISI

�1� �respectively tISI
�2�� of the ISI distribution, we

have registered the temporal interval separating the peak of
the action potential and the first subsequent maximum Tnl
and corrected �increased� these values by the corresponding
rise time needed to reach the detection threshold �. As
shown in Fig. 5, the comparison of tISI

�1� with the corrected

values T̃nl is very good for 0 Ī5 �A/cm2. Moreover, by

approaching ISN we observe that T̃nl→1/	c �where 	c is the
frequency of the spike train limit cycles emerging at the
saddle-node transition�. For completeness we have also veri-
fied that the other peaks observed in the distribution PISI�t�

FIG. 3. Probability density distribution PISI�t� for Ī
=6.15 �A/cm2. The figures refer to three different values of �: �a�
4.6, �b� 12.3, and �c� 100.0. The dashed line in �a� indicates the
slope of the exponential tail, while in �c� it represents an inverse
Gaussian distribution with the same average and the same variance
as the original PISI�t�.

FIG. 4. �a� PISI�t� obtained by the stochastic input �3� with �
=4.6 �continuous curve� and the potential output V�t� following a
step current stimulation �14� �dashed line�. The position of the spike
has been shifted to t=0 and the action potential has been rescaled to
better reveal the relaxation oscillations. �b� tISI

�1� as a function of �.
The error bars correspond to the histogram resolution employed to

estimate PISI�t�. Data refer to Ī=6.15 �A/cm2.
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are related to the subsequent linear oscillations of period Tl
shown in Fig. 4�a� �dashed line�. In particular, we concen-

trated on the second peak tISI
�2� and compared it with T̃nl+Tl,

also this time the agreement is quite good �see Fig. 5�3. In
general for the mth peak we expect that a good approxima-

tion of its position will be given by T̃nl+ �m−1�Tl, and this is
indeed verified as shown in Fig. 4�a�.

The damped oscillations following a spike induce a
modulation in the degree of excitability of the model, or
analogously a modulated effective threshold for spike elici-
tation. Indeed a PISI�t� quite similar to that displayed in Fig.
4�a� was obtained by Wilbur and Rinzel by considering a
leaky integrate-and-fire model with a threshold evolving dy-
namically in time �31�.

So far we limited ourselves to low values of noise vari-
ance, by increasing � we expect that the position of the first
peak will be shifted to smaller values. Due to stronger noise
fluctuations, after the emission of a spike a second spike can
be elicited even before the subsequent relaxation oscillation
of V�t� reaches its maximum value. This tendency of tISI

�1� to
decrease with � is illustrated in Fig. 4�b�.

2. Firing activated by noise

In the first part of this subsection our analysis has been
devoted to relatively short ISIs, however, the exponential tail
present in PISI�t� �see Fig. 3�a�� is extremely relevant since it
gives the main contribution to the average firing rate 	out of
the neuron. As already mentioned, this long lasting tail
should be related to some sort of activation process.

An activated firing can arise in this regime due to the
competition between the tendency of the HH dynamics to

relax towards its stable fixed point �Vrest�Ī�� and noise fluc-
tuations that instead lead the system towards an excitation
threshold �note, however, that there is no fixed threshold in
the HH-model �1��. Therefore, the dynamics of V�t� re-
sembles the overdamped dynamics of a particle in a potential
well under the influence of thermal �stochastic� fluctuations
�32�. Due to the activation process the membrane potential
can be driven towards the excitation threshold with an aver-
age escape time given by Kramers expression �32�

Te � eWS/�2
, �15�

where WS plays the role of an energy barrier and �2 of an
effective temperature of the bath. This behavior is indeed
verified for small �-values as shown in the inset of Fig. 2.

Therefore we expect that for ���c��WS ��c�9.64 for Ī
=5 �A/cm2� the dynamics can be characterized as an acti-
vation process, while for �2 larger than the barrier value the
dynamics should be mainly diffusive. A further indication
that for low noise the dynamics is essentially Poissonian is
given by the fact that R�1 for ���c. We have estimated

WS for various values of the average current for Ī� IHB and a

linear decrease of the barrier height with Ī is clearly observ-
able in Fig. 6, except in direct proximity of IHB. Moreover
�as expected� WS→0 approaching IHB where the fixed point
looses its stability via a subcritical Hopf bifurcation4.

To gain some deeper insight into the role of noise fluctua-
tions in eliciting a spike, we have estimated the STAP V�t�
and the STAF q�t� for sufficiently long ISIs and for small �.
As shown in Fig. 7, q�t� and V�t� exhibit oscillations of pe-

3Above the saddle-node transition Ī� ISN the position of the sec-
ond peak has been estimated as 1/	c+Tl.

4The average escape times Te have been estimated directly as

1/	out for Ī� ISN since at sufficiently low noise the activation is the
prevailing mechanism in this regime; above ISN where there is a
coexistence of a stable limit cycle with a stable fixed point these
times have been measured as the residence times TS in the silent
state �i.e., in proximity of the fixed point�.

FIG. 5. Positions of the peaks of the distribution PISI�t� as a

function of the average current Ī for low noise: first peak tISI
�1� �filled

diamonds� and second peak tISI
�2� �asterisks�. For comparison the time

intervals separating the induced spike from the maximum associ-

ated to the first �nonlinear� oscillation T̃nl �empty squares� and to

the second �linear� oscillation T̃nl+Tl �empty triangles� are shown.
The periods 1/	c of the regular spike trains emerging above ISN are
also plotted �dashed line�. The data for tISI

�1� and tISI
�2� have been ob-

tained for ��2.6−10.

FIG. 6. Activation barrier heights W as a function of the average
input current for the silent state WS �filled circles� and the oscilla-
tory state WO �empty squares�. The vertical dashed �respectively
dot-dashed� line indicates the position of ISN �respectively IHB�. A

linear fitting to WS in the interval 2 �A/cm2 Ī9 �A/cm2 is also
shown as a dotted line.
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riod �Tl preceding the spike emission and these oscillations
are almost in phase, apart from a small delay in the response
of V�t� with respect to the input noise. This indicates that the
potential follows the current oscillations and that the emis-
sion of a spike �for long ISIs� is commonly triggered by the
excitation of linear subthreshold oscillations around the rest
potential. Therefore the neuron in proximity of the rest state
acts as a sort of selective filter since it responds �by emitting
a spike� with higher probability when excited with a specific

input frequency ��1/Tl=61–88 Hz for 0 Ī ISN�. This re-
sult agrees with a previous analysis reported in �21�, where it
has been shown that a silent HH neuron, subjected to a sinu-
soidal current, optimally resonates when forced with a fre-
quency linearly correlated with 1/Tl.

3. High noise limit

As already mentioned, for sufficiently high noise the
probability density distribution of the ISIs reduces to an in-
verse Gaussian. The reason is that for ���c the “potential
well” surrounding the stable fixed point becomes irrelevant
for the dynamics due to the amplitude of the noise fluctua-
tions, whose effect on the dynamics of the neuron are two-

fold: a constant current Ī driving the system plus a stochastic
�Gaussian� term with zero average. Therefore we can assume
that the dynamics of the membrane potential is determined
by a Langevin equation with a drift term. The distribution of
the first passage time from a certain threshold, in the pres-
ence of a reset mechanism to a fixed rest potential, is given
by the well known inverse Gaussian distribution �1,30�

f�t� =
�

�2��t3
e−��t − ��2�/�2�t�, �16�

where �=AISI and �=SISI
2 /AISI. The good agreement shown

in Fig. 3�c� confirms that the mechanism leading to repetitive
firing in the high noise limit can be indeed schematized as a
Wiener process plus drift.

Moreover, by assuming that the drift is proportional to Ī
and the amplitude of the effective noise to � one obtains the
following dependence for the ISI coefficient of variation �1�

R �
�

�Ī + I0��AISI

, �17�

where I0 is a parameter. For fixed noise variance, R
�AISI

should then be inversely proportional to Ī+ I0 as indeed veri-
fied for �=100 in Fig. 8.

B. Coexisting coherence resonances

In the silent regime we have encountered two coexisting
coherence resonance phenomena. The first one is related to
the existence of an optimal noise level for the regularization
of the output spike trains and it corresponds to the effect
previously reported in �20,21�. The second coherence effect
can only be detected by considering the membrane potential
dynamics, not being associated with spikes, but instead with
the excitation of quite regular sequences of subthreshold os-
cillations occurring at small noise variances.

1. Coherence of the emitted spike trains

At intermediate noise levels the PISI�t� reduces its expo-
nential tail and begins to assume the shape of an inverse
Gaussian distribution �see Fig. 3�b��. Therefore, the activa-
tion mechanism responsible for the firing is gradually substi-
tuted by another stochastic mechanism resembling a Wiener
process with drift. In correspondence to the transition from
one kind of stochastic process to the other a regularization of
the output signal is observed: this phenomenon is known as
coherence resonance �13� and has already been reported for
various neuronal models. Our aim in the present subsection
is to give a more detailed characterization of the CR phe-
nomenon in terms of commonly used indicators of coherence
�14�, like the coefficient of variation R and the correlation
time �c, but also in terms of the saturated conditional entro-

FIG. 7. STAF q�t� �dashed line� and STAP V�t� �solid line�
preceding the emission of a spike. At time t=0 the potential over-
comes the detection threshold �. Both quantities have been defined
by employing a time window �T=0.1 ms and have been averaged

only over ISIs longer than 150 ms. The data refer to Ī=5 �A/cm2

and �=5.7. For a better comparison q�t� has been shifted and am-
plified by a factor 10, the original function is displayed in the inset.

FIG. 8. R
�AISI �filled circles� versus Ī, the dashed line is a

best fit to the data of the form a / �Ī+ I0� with a
=16.35 ms1/2�A/cm2 and I0=14.59 �A/cm2. The data refer to �
=100.
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pies hA, not previously employed in this context.

Let us first examine the signals displayed in Fig. 9 for Ī
=5 �A/cm2. At low �-values one observes rare spikes in-
duced by the activation mechanism, while for increasing
noise the train becomes more and more regular and finally at
high �-values the noise begins to modify even the relative
refractory times.

A first quantitative evidence of coherence resonance can
be given in terms of R: at low � this quantity tends to one as
expected for Poissonian processes, indeed R reaches a value
slightly greater than one due to the multimodal structure of
the PISI�t�; for increasing � the SISI decreases faster than AISI

since the diffusive nature of the process begins to prevail
over the activation effects �exemplified by a Poissonian dis-
tribution for PISI�t� with SISI=AISI�. The behavior of R at
large �-values is given by the expression �17� and since AISI
slightly decreases for large noise amplitude the coefficient of
variation turns out to be an increasing function of �. A mini-
mum of R is found at intermediate noise levels due to the
predominance of two different mechanisms at the origin of
spiking in two opposite limits: activated barrier crossing in
the limit ���c and diffusive motion with drift in the oppo-
site limit ���c. Indeed, as shown in Fig. 10 a minimum is

attained for ���R�55 for Ī=5 �A/cm2.
A second striking evidence of coherence resonance is

given by a maximum in the correlation time �c estimated
directly by integration of the squared autocorrelation func-
tion of the signal according to Eq. �10�. This maximum oc-

curs for a value smaller than that obtained for R, i.e., �

����30 for Ī=5 �A/cm2.
As previously suggested for SR �22�, dynamical entropies

are indicators appropriate to characterize the degree of un-
predictability of the output of a certain nonlinear system,
therefore we expect that they should be useful also in the
present context. In Fig. 11 the conditional entropies h�N� are

reported for increasing word length N at Ī=5 �A/cm2. These
quantities saturate to their asymptotical values hA for N=5,
thus indicating that the present dynamics can be reproduced
in terms of a Markovian process of order five with a tempo-
ral memory �5
�t=25 ms. Since for this current value AISI
varies between 17 ms and 11 ms for 20���150, this
means that in order to recover all the transmitted information
it is sufficient to record from two to three successive spikes.
Similar to what has been reported in �22� hA exhibits a non-
monotonic behavior characterized by a rapid initial growth at
small � followed by a decrease and a minimum at interme-
diate noise ����h�33�. Initially the signal is extremely
regular, being essentially a sequence of zeros in the absence
of spikes, then the noise tends to randomize the system and
this induces a rapid increase. Finally, the signal regularizes at
finite � and this leads to the occurrence of a minimum in the
asymptotic entropies.

We can safely affirm that the three employed indicators
agree in indicating a clear coherence resonance effect at the

considered current Ī=5 �A/cm2. Furthermore, we performed

a similar analysis at various current Ī in the silent and in the
bistable regime and the corresponding values �R, �h, �� are
shown in Fig. 12. For all indicators the optimal amount of
noise needed to observe CR decreases for increasing current.
However, while �R and �h seem not to vary dramatically in
the examined range, �� decreases noticeably approaching the
SN bifurcation. This behavior seems to be due to the fact that
the signal autocorrelation function does not only register co-
herence effects associated to the ISIs, but also those related
to the subthreshold oscillations occurring at quite low noise
�as reported in the next subsection�. The interaction between
these two resonances leads to the enhanced decrease of �� ,
somehow the ISI resonance is entrained by the second one
and shifted towards small �. Other indications that the signal
becomes more and more correlated approaching ISN are
given by the corresponding increase of the maximal correla-

FIG. 9. Membrane potentials V�t� for various levels of noise �

in the silent regime at Ī=5 �A/cm2.

FIG. 10. Ī=5 �A/cm2: coefficient of variation R �empty circles�
and correlation time �c �filled circles� as a function of �.

FIG. 11. Conditional entropies h�N� as a function of � for vari-

ous word lengths N. The data have been obtained for Ī
=5 �A/cm2 with a resolution of �t=5 ms.

LUCCIOLI, KREUZ, AND TORCINI PHYSICAL REVIEW E 73, 041902 �2006�

041902-8



tion time and by the decrease of the minimum of R and of hA
�all measured at the resonance�. This scenario is consistent
with the fact that the activation barrier WS separating the rest

state from the excited state also decreases with Ī and there-
fore the latter becomes more accessible at lower noise vari-
ances.

2. Coherence of the subthreshold oscillations

Let us now discuss in more detail the origin of the second
coherence resonance observed at very low noise variance. In
Fig. 13 the behavior of the correlation time �c as a function

of � is shown for Ī=4 �A/cm2 in a wider range of noise
with respect to the data shown in Fig. 10. In that figure the
examined noise range was restricted to values for which the
statistics of emitted spikes was sufficiently rich to ensure a
meaningful definition of R. In Fig. 13�a� �c reveals two clear
maxima: the higher one located at ��3 and the lower one at
��33. The origin of the first peak can be understood as
follows: for ��3 almost no spikes are emitted by the neu-
ron, however, the increase of noise tends to stimulate series
of subthreshold oscillations that are more and more corre-
lated; for ��3 the statistics of the emitted spikes begins to
be no more negligible and the occurrence of rare spikes tends
to decorrelate the signal leading to a decrease of �c. By fur-
ther increasing the noise variance the signal begins to be
characterized by a sequences of spikes, therefore the autocor-
relation function starts to register essentially the correlation
of these events and �c reveals a second peak related to the
regularization of the spike trains, this is the coherence phe-
nomenon previously discussed.

The transition from one dynamical regime to the other can
be better understood by examining the autocorrelation func-
tion of V�t� for various values of �. As shown in Fig. 13�b�,
for ��3 the autocorrelation function C�t� reveals oscilla-
tions of period �Tl, while at ��9.7 the maxima of C�t� are
located in correspondence with multiples of t� tISI

�1�. In be-
tween these two values there is a transition from an output
signal dominated by the subthreshold oscillations to a signal
characterized by trains of spikes, this transition can be lo-
cated at ��4.5, since at this value C�t� exhibits, at the first

oscillation, two maxima, one located at t�Tl and one at
t� tISI

�1�.
To summarize, for the HH model in the silent regime two

kind of coherence resonances can be observed, one at quite
low noise related to the excitation of subthreshold oscilla-
tions around the rest state and another one at higher noise
due to the regularization of successive ISIs associated to the
spikes emitted by the neuron. Obviously, since the first reso-
nance is not related to spike occurrence it cannot be revealed
by R or by h, but only by �c.

IV. BISTABLE REGIME

In the bistable regime the modifications of the shape of
the ISI distributions due to the effect of noise resemble those
found in the silent regime, apart from very low noise vari-
ances �see Fig. 14�. As shown in Fig. 14�a�, in this latter case
one observes a quite pronounced peak corresponding to 1/	c
followed by smaller multipeaks and an exponential tail. This
reflects the fact that the dynamics due to the noise switches
back and forth between the two coexistent states: oscillatory
and silent �cf. the time evolution of the membrane potential

reported in Fig. 15, in particular at �=3.2 �for Ī
=8 �A/cm2��. This dynamical behavior is reminiscent of the
motion of one particle in a double well subjected to thermal
fluctuations. Therefore, the residence times in the two states

FIG. 12. Optimal noise standard deviations corresponding to

coherence resonance versus Ī for the three considered indicators:
namely, �R �filled circles�, �� �filled triangles�, and �h �empty
squares�. The vertical dotted line indicates ISN, while the dashed
lines are guides for the eyes.

FIG. 13. Ī=4 �A/cm2: �a� �c �filled circles� as a function of �,
the solid line is a guide for the eyes; �b� autocorrelation functions
C�t� for three different noise values �namely �=2.9,4.5 and 9.7�,
the vertical dotted line indicates the period Tl, while the vertical
dashed line refers to tISI

�1� for �=9.7.
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should be related with the noise amplitude by a Kramers
relationship in the standard manner

Tx � eWx/�2
, �18�

where x=S for the silent state and x=O for the oscillatory
state. Moreover, the distributions of TS �respectively TO�
should be Poissonian due to the stochastic nature of the
jumping from one state to the other. In order to verify Eq.
�18� we have estimated the times TS and TO as a function of
� for small values of this parameter. The data, displayed in
Fig. 16, confirm that in the low noise limit both times can be
described in terms of an activation process induced by noise
fluctuations. Moreover, barriers WO and WS have been esti-
mated for various currents and are reported in Fig. 6. For

ISN� Ī�8 �A/cm2 the most stable state is the fixed point,
while above I=8 �A/cm2 the stability of the oscillatory state
prevails.

Let us now come back to the PISI�t� for �=2.2, in this
case we have estimated the distributions of the ISIs during
the oscillatory state only, let us term this probability distri-
bution as PISI

r �t�. This distribution, reported in Fig. 14�b�,
reveals a multimodal structure. While the first peak corre-
sponds to �1/	c, the other peaks are related to the linear
damped oscillations towards the fixed point, i.e., tISI

�k+1�− tISI
�k�

�Tl for k�1. The origin of this multimodal structure can be
understood by comparing the STAF qI�t� preceding the emis-
sion of a spike for intermediate ISI-values �namely for ISI
durations corresponding to the second and third peak of the
distribution� with the STAF qL�t� associated with long ISIs
falling in the exponential time tail. Analogously to what we
observed in the silent regime qL�t� reveals oscillations of a
period �Tl, indicating that the neuron will return to fire,
once entered in the silent state, mainly when stimulated via
current oscillations of the proper period and in phase with
V�t� oscillations �see Fig. 7�. As shown in Fig. 17, qI�t� has a
quite peculiar behavior, it also exhibits oscillations of period
�Tl, but these oscillations are in antiphase with respect to

FIG. 14. PISI�t� in the bistable regime at Ī=8 �A/cm2. PISI�t� is
displayed for various values of the noise: �=2.2 �a�, �=7.3 �c�, and
�=30 �d�. Additionally in �b� PISI

r �t� is shown for �=2.2.

FIG. 15. Membrane potential V�t� evolution in time for various
values of the noise variance. The top signal refers to I=8 �A/cm2

and �=3.2, the other three curves correspond �from top to bottom�
to �=6.8, 38.7, and 141.6 and I=7 �A/cm2.

FIG. 16. Residence times TO and TS as a function of 1/�2 for
low noise variance values: the dashed lines are fits to the numerical
data with expression �18� for �4, the corresponding barriers are

WS=21.4±0.5 and WO=17.9±0.3. All data refer to Ī=8 �A/cm2.

FIG. 17. STAF for long ISIs qL�t� �dashed line� and intermediate

ISIs qI�t� �solid line� for Ī=8 �A/cm2 and �=3.2. qL�t� has been
estimated by averaging over ISI�70 ms, while qI�t� refer to
25 ms� ISI�70 ms.
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those of qL�t�, apart from the last two preceding the firing of
the neuron. This means that, once entered in the oscillatory
state, the neuron can become silent only if a series of current
oscillations �in antiphase with respect to the damped oscilla-
tions of V�t� following a spike� inhibit repetitively spike
emission allowing a sufficient decrease of V�t� leading the
system in the attraction basin of the rest state. If by chance
one of these oscillations returns in phase with V�t� �during
the relaxation� the neuron will fire immediately after �as
shown in Fig. 17�. This is the mechanism at the origin of the
various peaks present in PISI�t� at low noise values, some
indications consistent with this scenario have been recently
reported in Ref. �8�.

As far as CR is concerned, a clear resonance is observable
by inspecting the dependence of R and the saturated hA as a
function of noise intensity for Ī=7 �A/cm2 �see Fig. 18�. On
the other hand, �c exhibits two almost coinciding maxima at
very low noise: one due to subthreshold oscillations at �
=1.8 and the other one related to ISI coherence at ��=2.6. At
higher currents the two maxima merge and they are no more
distinguishable one from the other. In order to understand if
a ISI coherence effect is still clearly discernible at the level
of correlation functions we have estimated the time �bin de-
fined in terms of Cbin �13�. This quantity, which is not influ-
enced by the subthreshold oscillations, shows a clear maxi-
mum at �=20 �see Fig. 18�d��. Since Cbin and hA measure
both dynamical features of the ISI sequence we expect that
they should give similar information, indeed for this current
�h=26±2. These results seem to indicate that the informa-
tion reduction needed to pass from the signal to the ISIs
allows to better single out the “standard” coherence phenom-
enon in this regime. By further increasing the current the
only indicator that continues to signal a coherence resonance

effect is R, while at Ī=9 �A/cm2 the minimum present in h
becomes a shoulder and also �bin does not exhibit maxima at
intermediate noise. The main difference between the dynam-

ics at Ī=7 �A/cm2 and Ī=9 �A/cm2 is related to the fact
that the oscillatory state becomes more stable than the silent
state at this latter current �i.e., WO�WS�. To summarize, the
coexistence of two coherence resonance is observed also in
the bistable regime until the fixed point remains the most

stable solution �i.e., for Ī8 �A/cm2�.

V. REPETITIVE FIRING REGIME

Above IHB the system is in a stable regime of repetitive
firing if subjected to a constant current. As we can see from
Fig. 19, the noise has a different effect this time. In particu-
lar, for sufficiently small � we observe that PISI�t� is essen-
tially a Gaussian centered around the repetitive firing period
1/	c �see Fig. 19�a��. Initially for 1���3, SISI increases
linearly with �, as expected for additive noise of sufficiently
small intensity. Upon further increasing the variance of the
noise, the distribution becomes again multimodal �as shown
in Fig. 19�b�� with peaks located at integer multiples of 1 /	c,
but this time the activation tail is almost absent. The multi-
peak structure �mainly limited to two peaks only� is due to
the fact that sometimes the neuron fails to emit a spike at
1 /	c because of a current fluctuation in antiphase with the
suprathreshold oscillations of the membrane potential. This
mechanism is analogous to the one already described in the
previous section to explain the multipeaks observed in the
bistable regime. At larger � the second peak reduces to a
shoulder �see Fig. 19�c�� and then PISI�t� converges toward
an inverse Gaussian.

In this regime the only indicator giving evidence of CR is
the coefficient of variation R, while for �→0 the correlation
time �c diverges to infinite, since the system converges to a
stable limit cycle, and the conditional entropies do not ex-
hibit any relative minimum. As shown in Fig. 20, R has a
maximum at �=12.3 �for R�0.19� followed by a minimum
at �=30 �corresponding to R�0.17�. However, due to the
very limited variation of R, it is difficult to appreciate from
the signal evolution some difference between �=12.3 and
30. A similar effect of maximal spike train incoherence was
observed for a leaky integrate-and-fire model with an abso-
lute refractory period for suprathreshold base current �17�. In
that case a maximum occurs at intermediate noise values
since perfectly regular spiking was found for vanishing noise
and in the large noise limit. In our model the maximum in R
is related to the emergence of the multipeak structure of
PISI�t�. In the limit �→0 we observe regular spiking �i.e.,

FIG. 18. Regime of bistability �Ī=7 �A/cm2�: R �a�, �c �b�,
hA=h�5�, �c�, and �bin �d� as a function of �.

FIG. 19. PISI�t� corresponding to Ī=11 �A/cm2 for various
�-values: �=2.2 �a�, 8.6 �b�, 12.3 �c�, and 22.4 �d�.
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R→0�, the introduction of noise in the system initially leads
to small irregularities in the spiking �reflected in the linear
increase of SISI with ��, and then to the emergence of the
second peak in PISI�t�, that induces an abrupt growth in the
SISI-value �as shown in the inset of Fig. 20� and also in R. At
higher noise levels ���23� the dynamics reduces essentially
to a Wiener process plus drift, this implies a merging of the
two peaks associated with a simultaneous decrease of SISI
followed by a saturation. The further randomization of the
dynamics leads to a decrease of AISI, that tends to its
asymptotic value, which is the refractory time. In addition,
this behavior of AISI is responsible for the minimum of R at
�=30 and for the successive growth consistent with Eq. �17�.

VI. SUMMARY AND FINAL REMARKS

In the present paper we have studied the Hodgkin-Huxley
model in the high-input regime subject to stochastic trains of
uncorrelated inhibitory and excitatory kicks. Our analysis
suggests that the specific shape of the time distribution of the
arrival times play no role in this framework. Moreover, the
response of the model is completely determined once the
average and the variance of the stochastic input are given.

In the silent regime we have reported the coexistence of
two coherence resonances: one corresponding to the regular-
ization of the emitted spike trains at intermediate noise levels
and the other one to the stimulation of subthreshold oscilla-
tions occurring at very low noise. All the employed indica-
tors, namely the coefficient of variation, the signal and ISI
correlation times, and the conditional entropies, are able to
identify the first resonance, while the second one can be
detected only by the autocorrelation time of the signal. Con-
ditional entropies, used in the context of coherence reso-
nance, turns out to be an effective indicator for coherence.
Experimental evidences of a similar coexistence of two kinds
of resonance has recently been reported in �33� for measure-
ments performed on an electrochemical cell and numerically
corroborated by simulations of a FitzHugh-Nagumo model.
However, there are two differences with our analysis: in Ref.
�33� the subthreshold signal was injected in the system to-
gether with the noise �therefore it is a stochastic resonance,

and not a coherence resonance� and the two resonances are
both observable at the level of spike trains.

The dynamics in the bistable regime can be described by
activated jumping processes across barriers between two
stable solutions: namely, the oscillatory and silent state. The
relative stability of the two dynamical regimes is ruled by the
ratio of the corresponding barrier heights: until the fixed
point solution remains the most stable state the observed
dynamics resembles that in the silent regime. In the repeti-
tive firing regime the only noticeable feature is related to a
maximization of incoherence observed at a finite noise level.

Moreover, we have clarified the various mechanisms re-
sponsible for spike triggering and for ending repetitive firing.
In particular, at relatively low noise the silent neuron can fire
due to stochastic fluctuations via two mechanisms: one re-
lated to relaxation oscillations following a spike and another
one associated with noise induced activation processes. The
first mechanism lead to the multipeaked structure of the ISI
distributions while the latter is responsible for the exponen-
tial tail. The presence of peaks in the PISI�t� suggests that the
system, under the influence of stochastic inputs, can resonate
when forced with specific frequencies corresponding to
1/ tISI

�k�, the main peak �due to nonlinear effects� being associ-
ated to frequencies in the �-range �34� �namely, from 40 to

66 Hz for Ī� �0:9� �A/cm2�, while the second one to lower
frequencies �namely, from 30 to 37 Hz for the same interval
of currents�. Indeed these results can represent an explana-
tion of recent findings �35�, where clear stochastic resonance
effects were observed in the range from 30 to 65 Hz for a
Hodgkin-Huxley neuron subjected to Poisson distributed
trains of EPSPs and IPSPs with periodically modulated rates
plus a subthreshold harmonic signal. The authors �35� sug-
gest that the origin of such SR should be related to sub-
threshold oscillations, however, the corresponding frequen-

cies �i.e., 611/Tl92 Hz for Ī� �0:9� �A/cm2� are too
high to match with the observed resonance. Once relaxed in
the rest state the Hodgkin-Huxley neuron begins to act as a
selective filter responding to current fluctuations with the
same frequency of the linear subthreshold oscillations, in
agreement with the analysis in �21�.

In the bistable and repetitive firing regime the multimodal
structure of PISI�t� at low noise is related to the periodicity of
suprathreshold and �linear� subthreshold oscillations. Tonic
firing states end when the neuron is stimulated with fluctua-
tions in antiphase with respect to the internal oscillations. In
the high noise limit the neuron dynamics in all the three
examined regimes can be represented as a stochastic Wiener
process plus drift.

In conclusion, we have shown that the Hodgkin-Huxley
neuron in the high input regime displays a large variety of
dynamical behaviors, thus rendering the study of its dynam-
ics interesting per se and not only for its biophysical impli-
cation. The richness of the Hodgkin-Huxley dynamics is par-
ticularly pronounced in the silent regime for low input noise
variance, where the response of the model resembles more
the activity of cortical neurons, since it is characterized by an
almost Poissonian distribution of interspike intervals �6�.
Apart from this feature, in this regime the PISI�t� presents a
multimodal structure indicating that the single neuron re-

FIG. 20. R �filled circles� versus � for Ī=11 �A/cm2. In the
inset are reported AISI �empty squares� and SISI �filled triangles� for
the same current.
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sponse is particularly enhanced in correspondence to specific
stimulation frequencies, thus possibly allowing for detection
and transduction of a variety of input signals. Moreover, a
network of such neuronal elements will have the capability
to exhibit coherent and correlated activity over different time
scales �mainly in the � and �-ranges �34��, a property that is
believed to be important for information encoding for corti-
cal processing �36�. Indeed, it has been found �21� that a
globally coupled Hodgkin-Huxley network subjected to sto-
chastic inputs reveal, for sufficiently strong synaptic cou-
pling, a collective synchronized rhythmic firing in a range of
40–60 Hz, induced via coherence resonance.

A point that has not been addressed in the present study
and that deserves further investigation is the influence of the
membrane time constant on the neuronal response. As al-
ready mentioned, for the Hodgkin-Huxley model the time
constant is �1 ms, similar to that measured for the auditory
brainstem neurons �37�, while typically cortical neurons ex-

hibit constants ranging from 10 to 40 ms �2�. An increase of
the time constant would alter the response of the neuron in
the low noise limit �by reducing the activation period pre-
ceeding spike emission� but this should have a limited effect
on the dynamics at intermediate and high noise variance.

As future developments of the present work, we plan to
investigate the role played by correlations among the synap-
tic inputs in enhancing or depressing the coherence effects
here discussed.
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